Интенсивность изнашивание материалов Исполнитель
- Скачано: 38
- Размер: 271.5 Kb
Интенсивность изнашивание материалов
План
- Общая характеристика процессов изнашивание материалов.
- Классификация видов изнашивания.
- Расчет интенсивности изнашивания.
- Факторы, влияющие на интенсивность изнашивания.
- Температура при трении.
- Трения качения. Характер взаимодействия контактирующих тел.
- Изнашивание поверхностей при трения качения.
{spoiler=Подробнее}
Общая характеристика процесса изнашивания и классификация видов изнашивания
Изнашивание поверхностей трения обычно проявляется в отделении частиц материала, размер которых изменяется в пределах от долей микрона до нескольких микронов (мкм). Отделение этих частиц подготавливается многократным воздействием нагрузок и температурных импульсов на единичные неровности, в результате чего накапливаются необратимые изменения, возникает неоднородность структуры и напряженного состояния, появляются трещины, которые, смыкаясь, образуют частицы износа. Такое представление о процессе изнашивания дает усталостная теория изнашивания, базирующаяся на молекулярно-механической теории трения. В соответствии с усталостной теорией изнашивание поверхностей рассматривается как результат нарушения фрикционных связей (единичных пятен касания). Характер нарушения фрикционных связей зависит от ряда факторов, из которых основными являются отношение глубины внедрения (или величины сближения в контакте) к радиусу единичной неровности () и отношение тангенциальной прочности молекулярной связи т к пределу текучести материала основы.
Величина геометрическая характеристика, позволяющая различать упругий контакт, пластический контакт и микрорезание, а величина физико-механическая характеристика материала основы.
При внешнем трении нарушение фрикционной связи происходит по поверхности раздела двух тел или по пленкам, покрывающим эти тела. Если нарушение фрикционной связи происходит не по поверхности раздела двух тел, а в глубине основного материала, внешнее трение переходит во внутреннее.
И. В. Крагельский в предложенной им классификации для установившегося движения в условиях трения без смазки и при граничной смазке различает пять видов нарушения фрикционной связи (рис. 4.1):
Рис. 4.1. Основные характеристики фрикционных связей
по И. В. Крагельскому.
1) упругое оттеснение материала выступами контртела, которое встречается, когда напряжения в зоне контакта не превышают предела текучести. Разрушение материала (износ) в этом случае происходит в результате усталостных явлений;
2) пластическое оттеснение материала, которое происходит, если контактные напряжения достигают предела текучести, но материал обтекает внедрившиеся выступы контртела. Износ в этом случае будет результатом малоциклового пластического передеформирования (малоцикловая фрикционная усталость). Условия возникновения упругого или пластического оттеснения в определенной степени характеризуются ранее изложенными представлениями об упругом и пластическом контакте;
3) микрорезание, которое происходит при достижении контактными напряжениями или деформациями разрушающих значений (нарушается режим обтекания выступов деформируемым материалом). Износ происходит при однократном акте взаимодействия;
4) адгезионное нарушение фрикционной связи (разрушение схватывающихся пленок); оно не приводит непосредственно к разрушению, но влияет на величину действующих на контакте напряжений и деформаций, т. е. сопутствует усталостным процессам. Адгезионное нарушение происходит при прочности пленки, меньшей прочности основного материала, т. е. при положительном градиенте механических свойств > 0;
5) когезионный отрыв, который возникает если прочность фрикционной связи (прочность пленки) выше прочности основного материала, т. е. при отрицательном градиенте механических свойств < 0. В этом случае износ происходит в результате глубинного вырывания при однократном воздействии.
При микрорезании и когезионном отрыве износ максимальный, а при упругом, контакте - минимальный.
Необходимо отметить и другие классификации процессов износа. Первая классификация была предложена Бринелем в 1921 г. В зависимости от кинематического признака и наличия прослойки между поверхностями он различал следующие виды изнашивания:
- при трении качения со смазкой;
- при трении качения без смазки;
- при трении скольжения со смазкой;
- при трении скольжения без смазки;
- между двумя твердыми телами;
- с разделением твердых тел промежуточным шлифующим порошком.
М. М. Хрущов предложил классификацию видов износа, в основе которой лежат служебные признаки и характер основных явлений, определяющие эффект изнашивания. Он делит виды изнашивания на следующие группы:
1. механическое изнашивание:
а) абразивное изнашивание;
б) изнашивание вследствие пластического трения;
в) изнашивание при хрупком разрушении;
г) усталостное изнашивание;
2. молекулярно-механическое изнашивание (при окислении кислородом воздуха);
3. коррозионно-механическое изнашивание (при окислении кислородом воздуха);
4. навигационное изнашивание.
Б. И. Костецкий классифицирует виды изнашивания деталей-машин по главным процессам, протекающим в поверхностных слоях металла трущихся пар: пластическим деформациям, упрочнению, возникновению металлических связей и разрушению их, адсорбции, диффузии и образованию химических связей, нагреву и изменению свойств металлов в результате тепловых явлений, резанию и усталостным явлениям.
По Костецкому вид износа определяется процессом, который протекает с максимальной скоростью и становится преобладающим. Основными видами изнашивания деталей машин он считает схватывание первого рода, окислительное, тепловое (схватывание второго рода), абразивное, осповидное (усталостное).
Б. И. Костецкий делит все процессы разрушения на нормальные (теоретически неизбежные и практически допустимые) и патологические явления повреждаемости, (не допустимые при работе машин):
1. Допустимые виды изнашивания:
а) окислительный износ;
б) износ пленок некислородного происхождения;
в) абразивный износ без снятия стружки и без царапания.
2. Повреждения (недопустимые виды изнашивания):
а) схватывание;
б) абразивный износ со снятием стружки и царапанием;
в) усталостное повреждение;
г) фреттинг-процесс;
д) смятие;
е) коррозия;
ж) кавитация.
О процессе разрушения поверхностного слоя деталей М. М. Тененбаум судит по характеру единичных разрушений, следы которых в той или иной мере сохраняются на изношенной поверхности. Он, как и Б. И. Костецкий, считает, что на разных участках поверхности могут наблюдаться различные виды изнашивания, однако практическое значение имеет один процесс, протекающий с большей скоростью.
М. М. Тененбаум различает следующие виды разрушения поверхностного слоя деталей при их изнашивании: разрушение материала путем среза, путём отрыва, усталостное разрушение материала и полидеформационный процесс разрушения материала. Он считает, что разрушению поверхностного слоя предшествуют процессы разупрочнения, которые подразделяются на механические, тепловые, химические и адсорбционные.
М. М. Тененбаум предлагает классификацию процессов изнашивания в соответствии с 16 видами фрикционных контактов (рис. 4.2):
I - в условиях гидродинамического или гидростатического поддерживающего эффекта жидкой смазки:
II - в условиях газовой смазки;
III - в условиях граничной смазки;
IV- при сухом трении (спорадическое схватывание, заедание, окислительный износ);
V- при сухом трении или граничной смазке в условиях осциллирующего движения сопряженных деталей (фреттинг-коррозия);
VI- в условиях циклического действия контактных напряжений при трении качения (питтинг, осповидный износ, полидеформационный процесс разрушения);
VII- в условиях соударения тел (усталостный или полидеформационный процессы изнашивания, изнашивание при крупном разрушении поверхностного слоя);
VIII- при трении о монолитный абразив (закрепленный абразив) ;
IX- при перемещении деталей в абразивной массе;
X- при трении скольжения сопряженных поверхностей и наличии между ними абразивных частиц;
XI- при трении качения и наличии абразивных частиц;
XII- в результате механического действия твердых частиц, перемещаемых потоком жидкости (гидроабразивный вид изнашивания, коррозионно-механический процесс изнашивания);
XIII- в результате механического действия твердых частиц, перемещаемых потоком газа (газоабразивная эрозия);
XIV- в условиях циклического действия локальных гидравлических ударов (кавитационный вид изнашивания, кавитационная эрозия);
XV- под действием высокоскоростного потока жидкости (щелевая эрозия);
XVI- под действием высокоскоростного потока газа (газовая эрозия).
Рис. 4.2. Классификация процессов изнашивания по М. М. Тененбауму.
Наряду с вышеуказанными существует классификация Ш. М. Билика. Ш. М. Билик применительно к пластмассам приводит следующие механизмы истирания: 1) псевдоупругий; 2) волнообразный; 3) пластичный; 4) абразивный; 5) комбинированный. Ш. М. Билик различает механизмы истирания в зависимости от устанавливающейся микрогеометрии поверхности трения пластмасс. Он считает, что даже при небольших касательных силах часть упругих напряжений в материале снимается в результате пластических деформаций поверхностных неровностей, т. е. упругого механизма истирания для пары сталь - пластмасса не существует, упругое контактирование поверхностей всегда сопровождается пластической деформацией, преимущественно пластмассы. И этот механизм истирания он называет псевдоупругим.
Комбинированным механизмом истирания Ш. М. Билик считает совмещение упругого, волнообразного, пластичного и абразивного механизмов истирания.
Таким образом, процесс изнашивания является кумулятивным, т. е. суммирующим действие отдельных факторов (механических и химико-физических) при повторном нарушении фрикционных связей до отделения частицы износа.
Расчет интенсивности изнашивания
Линейная интенсивность изнашивания определяется как объем материала, удаляемый с единицы номинальной поверхности на единичном пути трения, т. е.
(4.1.)
где - объем материала, удаляемый на пути трения L.
Так как в самом деле материал удаляется лишь с фактической площади касания, то по аналогии с (2.29) определяем удельную интенсивность изнашивания (в результате одного взаимодействия неровностей)
(4.2)
где иd - объем материала, удаляемый с площади Аr при сдвиге на пути d (в результате одного акта взаимодействия неровностей); d - средний диаметр пятна касания. Разделим (4.1) на (4.2)
(4.3)
Если износ будет идти равномерно во времени, то, очевидно, изношенные объемы будут пропорциональны путям трения, т. е.
(4.4)
Подставив (4.3) в (4.4), получим
(4.5)
Зная, что ра = и запишем
(4.6)
Если за один акт взаимодействия неровностей удаляется объем материала иd, то за п циклов (актов взаимодействия) удаляется объем
(4.7)
Путем моделирования шероховатой поверхности набором шаровых сегментов можно получить (приводим без вывода) зависимость для расчета Uv
(4.8)
Подставив (4.7) и (4.8) в (4.2), получим
(4.9)
С учетом геометрической конфигурации и расположения по высоте единичной неровности основное уравнение для расчета интенсивности изнашивания примет вид
(4.10)
Где K1= 0,2 - множитель, определяемый геометрической конфигурацией и расположением неровностей по высоте; коэффициент перекрытия.
Это уравнение интенсивности изнашивания для упругого контакта (для инженерных расчетов) запишется так:
а) при контактировании шероховатых неприработанных поверхностей без волнистости (pa=рс)
(4.11)
Здесь (4.12)
б) при контактировании шероховатых и волнистых неприработанных поверхностей (pa ¹ pc)
(4.13)
где (4.14)
в) при контактировании приработанных поверхностей, у которых установилась равновесная (или даже оптимальная) шероховатость, самовоспроизводящаяся в процессе изнашивания,
(4.15)
В формулах (4.11 - 4.13) обозначено:
I - интенсивность изнашивания; Кtv - поправочный коэффициент (по справочникам); ра - номинальное давление; Е-модуль упругости; tу - параметр кривой фрикционной усталости (определяется по справочникам); комплексная характеристика шероховатости; r-приведенный радиус неровностей; b, r - параметры опорной кривой; Нв - высота волны; Rв - радиус волны; fm - молекулярная составляющая коэффициента трения; К1 - множитель, определяемый геометрической конфигурацией и расположением неровностей по высоте; s0 - разрушающее напряжение при растяжении; t0 - сдвиговое сопротивление при экстраполяции нормального давления к нулю; аг, - коэффициент гистерезисных потерь; К - поправочный коэффициент (по справочникам).
Для пластического контакта интенсивность изнашивания, как правило, не рассчитывается (хотя и имеются эмпирические соотношения для этой цели), так как считается, что необходимо во всех случаях обеспечивать упругое контактное взаимодействие тел. Большей частью это происходит самопроизвольно в результате приработки поверхностей, приводящей к изменению конфигурации контактирующих неровностей и расположения их по высоте.
Интенсивность изнашивания на практике меняется в широких пределах - от 10-3 до 10-12. Различают десять классов износостойкости:
0, I, II, III, IV, V |
- интенсивность изнашивания изменяется в пределах от 10-12 до 10-7 (упругий контакт);
|
VI, VII |
- интенсивность изнашивания изменяется в пределах от 10-7 до 10-5 (упругопластический контакт);
|
VIII, IX | - интенсивность изнашивания изменяется в пределах от 10-5 до 10-3 (микрорезание). |
Факторы, влияющие на интенсивность изнашивания
Нормальная нагрузка. Из уравнений (4.11, 4.13, 4.15) видно, что нормальная нагрузка (номинальное давление) нелинейно влияет на износ для неприработанных поверхностей: и линейно для приработанных поверхностей: I»ра. В общем случае I»ра1...3, что хорошо согласуется с многочисленными лабораторными исследованиями и с опытными данными эксплуатации деталей машин.
Шероховатость и волнистость поверхности. Влияние микрогеометрии поверхности на интенсивность изнашивания значительно. Поскольку комплексный критерий шероховатости меняется в пределах 10-3<D<1, а показатель степени при D лежит в пределах 0,8 - 4 (для большинства поверхностей n»2, параметр фрикционной усталости 2<tу<10), то изменение микрогеометрии может менять интенсивность изнашивания в несколько порядков.
Отношение параметров волнистости обычно лежит в пределах 10-3 >>10-6, а показатель степени при лежит в пределах 0,16 - 0,8. Поэтому с увеличением отношения интенсивность изнашивания уменьшается.
В случае изнашивания приработанных поверхностей исходная микрогеометрия трущихся поверхностей не влияет на интенсивность изнашивания.
Механические свойства контактирующих материалов. Показатель степени при модуле упругости Е находится в пределах 0,6-7 (формула 2.39), 1,9-9,6 и от -1 до +4. С увеличением модуля упругости Е (для материалов с одинаковыми прочностными свойствами) интенсивность изнашивания возрастает, причем весьма значительно.
С возрастанием разрушающего напряжения s0 и параметра; фрикционной усталости tу, а также с повышением твердости интенсивность изнашивания снижается. Более подробно влияние твердости рассматривается при изучении абразивного изнашивания, (см. ниже).
Так как между модулем упругости Е и прочностными характеристиками (s0, tу) имеется связь, однозначную зависимость между модулем упругости и интенсивностью изнашивания или между величинами s0 и tу и интенсивностью изнашивания экспериментально установить затруднительно.
Свойство несовершенной упругости учитывают коэффициентом гистерезисных потерь аг.
Фрикционные свойства сопряжения. С уменьшением коэффициента трения интенсивность изнашивания уменьшается:
(4.16)
Этим объясняется частично и тот факт, что применение смазки сильно снижает fM и тем самым значительно уменьшает износ. Однако влияние коэффициента трения на износ неоднозначно, так как изменение коэффициента трения влечет за собой изменение температуры узла трения, а температура, в свою очередь, влияет на механические свойства трущихся поверхностей.
Влияние силы молекулярного взаимодействия на интенсивность изнашивания приработанных поверхностей учитывается сдвиговым сопротивлением t0. Чем меньше t0, тем меньше интенсивность изнашивания. Поэтому введение смазки снижает интенсивность изнашивания.
Температурно-скоростной фактор. Влияние скорости скольжения на интенсивность изнашивания изучено еще недостаточно. От скорости скольжения зависят мощность тепловыделения и температура узла трения, последняя влияет на механические и фрикционные свойства изнашивающихся поверхностей, ведет к структурным изменениям в поверхностных слоях. Поэтому износ поверхностей в результате воздействия температурно-скоростного фактора рассматривают как следствие зависимости от температуры тех свойств материалов, характеристики которых вошли в расчетные уравнения, (4.11, 4.13, 4.15), т. е. Е, s0, fM, tу. Модуль упругости материалов Е с повышением температуры незначительно снижается, разрушающее же напряжение s0 уменьшается более существенно. Влияние температуры на fм и tу неоднозначно и до настоящего времени еще недостаточно изучено. Экспериментально установлено, что зависимость интенсивности изнашивания от температурно-скоростного (точнее температурно-нагрузочно-скоростного) фактора, определяющего тепловыделение в контакте, имеет так называемые критические точки (рис. 4.3). При достижении на контакте определенных температур происходят качественные изменения механических и фрикционных свойств поверхностных слоев материалов, при которых интенсивность изнашивания может скач ком меняться на несколько порядков.
Рис. 4.3. Зависимость интенсивности изнашивания от нагрузки для стали (скорость относительного скольжения V = 2,6 м/с). |
Температура при трении. При относительном скольжении двух тел в тонком поверхностном слое образуется тепло, которое может привести к местному размягчению и расплавлению материала. Тепло распространяется от пятен контакта в глубь обоих контактирующих тел, причем тепловые потоки распределяются в зависимости от теплофизических свойств контактирующих тел, их размеров и условий теплоотвода.
Передача тепла идет по нормали к изотермической поверхности от мест с большей температурой к местам с меньшей температурой (рис. 4.4). Интенсивность теплового потока зависит от работы силы трения и величины площади, на которой осуществляется эта работа.
Если теплопроводность первого и второго контактирующих тел l1 и l2, то общее количество тепла Q, образующегося в зоне трения, распределяется между телами, т. е. Q = Q1+Q2. Соотношение тепловых потоков можно представить в виде
(4.17)
где коэффициент относительной теплопроводности тел;aа -коэффициент, характеризующий теплоинерционные свойства первого тела относительно второго.
Зависимость (4.17) получена для двух соприкасающихся ограниченных тел, имеющих тепловую изоляцию с боковых сторон. В действительности происходит теплоотдача в окружающую среду. С учетом теплоотдачи при линейном тепловом потоке коэффициент распределения теплового потока, показывающий, какая часть теплового потока направляется на одно из контактирующих тел (на второе тело), запишется так:
(4.18)
где s' - коэффициент теплоотдачи в окружающую среду; р - плотность материала второго тела; с - удельная теплоемкость второго тела; v - скорость скольжения.
Рис. 4.4. Схема передачи тепла при контакти-ровании двух шерохова-тых поверхностей. |
На условие теплоотдачи решающее значение оказывает коэффициент взаимного перекрытия, представляющий собой отношение площадей трения контактирующей пары. Если два кольцевых образца трутся торцами, то коэффициент взаимного перекрытия Квз. равен 1, при этом тепло, генерируемое в зоне трения, проникает вглубь и рассеивается с торцевой поверхности (рис. 4.5, а). Если по диску трется пальчиковый образец, можно считать, что Квз.»0, при этом основная часть тепла рассеивается в окружающую среду, оставляя поверхность диска почти холодной (рис. 4.5, б).
Рис. 4.5. Коэффициенты взаимного перекрытия |
При трении различают:
- температуру вспышки на единичном пятне;
- суммарную температуру на поверхности трения;
- среднюю объемную температуру.
На единичных пятнах касания (время существования такого пятна касания 10-7-10-8 секунд) возникают температурные вспышки значительной величины (700°С и более).
Характер взаимодействия контактирующих тел
Трением качения называют трение движения двух твердых тел, при котором их скорости в точках касания одинаковы по величине и напряжению.
Если цилиндр (колесо) катится по неподвижной плоскости (рис. 4.6) так, что при повороте его на угол j ось колеса смещается на величину Rj (R - радиус колеса), то такой вид движения называют чистым качением, или качением без проскальзывания. При этом точка О1 колеса, соприкасающаяся с плоскостью, неподвижна, а скорости всех других точек колеса таковы, как если бы оно в данный момент поворачивалось относительно точки О1 с угловой скоростью w, равной (4.19)
Здесь V0 -линейная скорость точки О.
Ось, проходящую через точку О1 перпендикулярно плоскости качения колеса, называют мгновенной осью вращения. В действительности при качении контакт осуществляется не по линии мгновенной оси вращения, а по некоторой поверхности, которая образуется в результате деформации контактирующих тел. Если к колесу приложена нормальная нагрузка N и движущая сила Fо (не проходящая через точку О1), то движущим моментом (численно равным моменту сопротивления качению) будет произведений М=Fo/R, а коэффициентом трения качения— отношение движущего момента к нормальной нагрузке, т. е.
(4.20)
Рис. 4.6. Тело, катящееся по плоскости (расчетная схема) |
Реакция опоры N' смещена на величину эксцентриситета е относительно действия силы N. Реактивный момент (момент сопротивления качению) будет М=N'e. Из условия М=М и N=N' следует, что,
e=r (4.21)
т. е. для чистого качения по закону Кулона коэффициент трения качения численно равен эксцентриситету е и имеет размерность длины.
Наряду с коэффициентом трения качения применяют и безразмерную величину f - коэффициент сопротивления качению, равную
F= (4.22)
Коэффициент сопротивления качению f численно равен отношению работы Aj, совершаемой движущей силой Fo на единичном пути, к нормальной нагрузке:
F= (4.23)
Изучением природы трения качения занимались после Кулона многие исследователи, эти работы продолжаются и сейчас. Имеется ряд теорий, объясняющих природу трения качения. Так, О. Рейнольдc (1876 г.) установил, что одной из причин возникновения сил сопротивления качению является наличие на площадке контакта участков с проскальзыванием, где действуют силы трения скольжения. Деформация растяжения поверхности основания под действием приложенных сил не является равномерной по дуге контакта. В зоне контакта имеются три участка: в центре участок сцепления, где проскальзывание отсутствует, и по краям - два участка с проскальзыванием. Величина проскальзывания зависит от соотношения упругих свойств материалов и радиусов кривизны контактирующих поверхностей.
Экспериментально установлено, что проскальзывание весьма мало по величине. Если материал контактирующих тел одинаков, размер площадки контакта и распределение давлений я а ней подчиняются теории Герца, а проскальзывание на площадке контакта происходит вследствие разницы в кривизне соприкасающихся тел. При разных упругих постоянных контактирующих тел распределение нормальных давлений уже >не подчиняется теории Герца и является несимметричным относительно оси симметрии катящегося цилиндра. Возникает неравенство и тангенциальных напряжений, что – является причиной дополнительного проскальзывания.
Для случая качения сферы в прямолинейном желобе установлено, что чистое качение свойственно лишь двум сечениям шара, расположенным на расстоянии 0,17 d (d - ширина желоба) от центра зоны контакта. В остальной части -контакта происходят проскальзывание.
В 1837 г. французский инженер Дюпюи предложил гистерезисную теорию трения качения, согласно которой в основе сопротивления качению лежит явление несовершенной упругости, В 50-х годах XX в. эта теория была детально разработана Д. Тейбором. Рассмотрим основную идею этой теории.
При качении жесткого цилиндра по упругому основанию каждый элемент основания в течение времени, когда он находится в области контакта с цилиндром, испытывает последовательно цикл нагрузки (затрачивается работа) и разгрузки (возвращается работа). Разность между затраченной при нагрузке и возвращенной при разгрузке работой, как известно, равна площади петли гистерезиса: агФ1 (где аг - коэффициент гистерезисных потерь, Ф1 - работа по перемещению цилиндра на единицу пути трения).
Согласно гистерезисной теории трения сила трения качения равна F= (4.24)
Установлено (приводим без вывода), что
F= (4.25)
где Nl - нормальная нагрузка, отнесенная к длине цилиндра; R-радиус цилиндра; - коэффициент Пуассона основания; Е-модуль упругости.
Таким образом, задача расчета сопротивления качению сводится к определению коэффициента аг.
При качении жесткого цилиндра по вязкоупругому основанию получено выражение для расчета коэффициента сопротивления качению
F= (4.26)
где ао - полуширина площадки контакта; К - радиус цилиндра; Хц - координата точки тыльной стороны цилиндра, определяющая границу зоны контакта; к - параметр принятой модели вязкоупругого тела.
Гистерезисная теория качения неприемлема для случая качения металла по металлу в связи с тем, что значительная работа затрачивается на пластическое деформирование поверхностей трения металлов, ведущее к появлению остаточных напряжений и искажающее картину гистерезиса.
Изнашивание поверхностей при трении качения
При трении качения детали испытывают высокие многократно повторяющиеся контактные напряжения, в результате чего на поверхностях трения возникает усталостное изнашивание, а также абразивное, заедание и др. При повторных контактных напряжениях в зависимости от соотношения между нормальной и тангенциальной составляющими сил в контакте в поверхностном или подповерхностном слое детали появляются первичные микротрещины, имеющие определенную ориентировку по отношению направления сил трения (рис. 4.7). В трещины под действием капиллярных сил проникает смазка. Когда такая трещина повторно вступает в контакт, под действием внешней нагрузки она сжимается, и масло под высоким давлением расширяет ее. В результате многократного повторного действия этого процесса происходит разрушение микрообъемов металла, и па поверхностях трения появляются так называемые осповидные сколы, приводящие в дальнейшем к разрушению поверхности. При высоких контактных напряжениях процесс усталостного изнашивания быстро прогрессирует.
Рис. 4.7. Ориентация поверхностных трещин на поверхностях трения при качении с проскальзыванием (v1> v2) |
Следует иметь в виду, что усталостное изнашивание возникает тогда, когда на поверхностях трения есть смазка и процесс разрушения не носит абразивного характера. При отсутствии смазки, возникшие на поверхности трения микротрещины не развиваются, а слипаются под влиянием температуры и пластического деформирования металла. В этих условиях ведущим видом изнашивания становится заедание.
При загрязнении смазки абразивными частицами трещины в поверхностном слое не успевают развиться вследствие опережающего изнашивания поверхностного слоя абразивными частицами.
Методики расчета усталостного изнашивания при качении с проскальзыванием изучаются в специальных курсах, потому здесь не рассматриваются.
{/spoilers}